Vector Calculus 20E, Spring 2012, Lecture B, Final exam

Three hours, eight problems. No calculators allowed.
Please start each problem on a new page.
You will get full credit only if you show all your work clearly.
Simplify answers if you can, but don't worry if you can't!

1. Let γ be the ellipse $x^{2}+4 y^{2}=4$, oriented anticlockwise. Compute

$$
\int_{\gamma}(4 y-3 x) d x+(x-4 y) d y
$$

2. Find the integral $\int_{\gamma} \mathbf{F} . d \mathbf{s}$ where $\mathbf{F}=y \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ and the curve γ is the part of the parabola $z=x^{2}, y=0$ going from $x=-1$ to $x=2$.
3. Find the integral $\int_{R} x y z d S$, where R is the rectangle in \mathbb{R}^{3} whose vertices are the points $(0,0,0),(1,0,0),(0,1,1),(1,1,1)$.
4. Find the area of the surface Σ in \mathbb{R}^{3} described by

$$
\left(u \cos v, u \sin v, u^{2}\right) \quad 0 \leq u \leq 2 \quad 0 \leq v \leq 2 \pi .
$$

5. Find the flux $\int_{\Sigma} \mathbf{F} . d \mathbf{S}$ of the vector field $\mathbf{F}=y \mathbf{i}-x \mathbf{j}+z^{3} \mathbf{k}$ through the surface Σ in \mathbb{R}^{3} which is oriented with an upward normal vector and described by

$$
(u \cos v, u \sin v, v) \quad 0 \leq u \leq 2 \quad 0 \leq v \leq 2 \pi .
$$

6. Find the flux of the vector field $\mathbf{F}=x^{3} \mathbf{i}+y^{3} \mathbf{j}+z^{3} \mathbf{k}$ out of the unit sphere in \mathbb{R}^{3}.
7. Find the integral $\int_{\gamma} \mathbf{F} . d \mathbf{s}$ where $\mathbf{F}=x \mathbf{i}+y^{2} \mathbf{j}+z^{3} \mathbf{k}$ and γ is the oriented curve given by

$$
\left(\sin ^{2} t, \cos ^{3} t, \sin ^{4} t\right) \quad 0 \leq t \leq 2 \pi
$$

8. One of the two vector fields

$$
\begin{gathered}
\mathbf{F}=y^{2} \mathbf{i}-z^{2} \mathbf{j}+x^{2} \mathbf{k} \\
\mathbf{G}=\left(x^{3}-3 x y^{2}\right) \mathbf{i}+\left(y^{3}-3 x^{2} y\right) \mathbf{j}+z \mathbf{k}
\end{gathered}
$$

is conservative, and the other is not. Which is which? Find a potential for the conservative one.

